

Space–Time Computational FSI Techniques

Kenji Takizawa Waseda University Tayfun E. Tezduyar Rice University

Happy 60th Birthday, Tony!

FSI Modeling of Spacecraft Parachutes

- Parachute structure is light and sensitive to changes in fluid forces.
- Ringsail parachutes have hundreds of gaps and slits.
- Parachutes are used in clusters, with contact between them.
- Parachute operation involves disreefing from one stage to next.

Flapping-Wing Aerodynamics of an Actual Locust Video-Captured Data

Dr. Fabrizio Gabbiani and Dr. Raymond Chan (BCM, Houston)

Flapping-Wing Aerodynamics of an Actual Locust

Computational Results

45 mm

Flapping: 20 Hz

- Correct lift force calculation requires correct flapping motion.
- The computational domain has near topology changes in a flapping cycle.

Deforming-Spatial-Domain/Stabilized Space–Time Formulation (DSD/SST) (ST-SUPS)

$$\int_{Q_n} \mathbf{w}^h \cdot \rho \left(\frac{\partial \mathbf{u}^h}{\partial t} + \mathbf{u}^h \cdot \nabla \mathbf{u}^h - \mathbf{f}^h \right) dQ + \int_{Q_n} \boldsymbol{\varepsilon}(\mathbf{w}^h) : \boldsymbol{\sigma}(p^h, \mathbf{u}^h) \ dQ - \int_{(P_n)_h} \mathbf{w}^h \cdot \mathbf{h}^h \ dP$$

+
$$\int_{Q_n} q^h \nabla \cdot \mathbf{u}^h \, dQ + \int_{\Omega_n} (\mathbf{w}^h)_n^+ \cdot \rho \left((\mathbf{u}^h)_n^+ - (\mathbf{u}^h)_n^- \right) d\Omega$$

$$+ \sum_{e=1}^{(n_{el})_n} \int_{Q_n^e} \frac{1}{\rho} \left[\tau_{\text{SUPG}} \rho \left(\frac{\partial \mathbf{w}^h}{\partial t} + \mathbf{u}^h \cdot \nabla \mathbf{w}^h \right) + \tau_{\text{PSPG}} \nabla q^h \right] \cdot \left[\mathcal{L}(p^h, \mathbf{u}^h) - \rho \mathbf{f}^h \right] dQ$$
$$+ \sum_{e=1}^{(n_{el})_n} \int_{Q_n^e} \nu_{\text{LSIC}} \nabla \cdot \mathbf{w}^h \rho \nabla \cdot \mathbf{u}^h dQ = 0$$

$$\mathcal{L}(q^h, \mathbf{w}^h) = \rho \left(\frac{\partial \mathbf{w}^h}{\partial t} + \mathbf{u}^h \cdot \boldsymbol{\nabla} \mathbf{w}^h \right) - \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}(q^h, \mathbf{w}^h)$$

ST Finite Element

$$N_a^{\alpha} = T^{\alpha}(\theta) N_a(\boldsymbol{\xi}), \ a = 1, 2, \dots, n_{en},$$
$$\alpha = 1, 2, \dots, n_{ent},$$

- High spatial and temporal accuracy
- Advantages in space-time framework

ST-VMS (DSD/SST-VMST) Method

Advective Form

$$\begin{split} &\int_{Q_n} \mathbf{w}^h \cdot \rho \left(\frac{\partial \mathbf{u}^h}{\partial t} + \mathbf{u}^h \cdot \nabla \mathbf{u}^h - \mathbf{f}^h \right) dQ + \int_{Q_n} \boldsymbol{\varepsilon}(\mathbf{w}^h) : \boldsymbol{\sigma}(p^h, \mathbf{u}^h) dQ \\ &- \int_{(P_n)_h} \mathbf{w}^h \cdot \mathbf{h}^h dP + \int_{Q_n} q^h \nabla \cdot \mathbf{u}^h dQ + \int_{\Omega_n} (\mathbf{w}^h)_n^+ \cdot \rho \left((\mathbf{u}^h)_n^+ - (\mathbf{u}^h)_n^- \right) d\Omega \\ &- \sum_{e=1}^{(n_{el})_n} \int_{Q_n^e} \left[\rho \left(\frac{\partial \mathbf{w}^h}{\partial t} + \mathbf{u}^h \cdot \nabla \mathbf{w}^h \right) + \nabla q^h \right] \cdot \mathbf{u}' dQ - \sum_{e=1}^{(n_{el})_n} \int_{Q_n^e} \nabla \cdot \mathbf{w}^h p' dQ \\ &+ \sum_{e=1}^{(n_{el})_n} \int_{Q_n^e} \mathbf{w}^h \cdot \rho(\mathbf{u}' \cdot \nabla \mathbf{u}^h) dQ - \sum_{e=1}^{(n_{el})_n} \int_{Q_n^e} \rho \mathbf{u}' \cdot (\nabla \mathbf{w}^h) \cdot \mathbf{u}' dQ = 0 \end{split}$$

FSI Modeling of Spacecraft Parachutes ST-SUPS

- Large displacements
- Near contact
- Near topology changes
- "Nearness" is sufficiently "near" for the purpose of solving this problem

Flapping-Wing Aerodynamics of an Actual Locust ST-VMS

- Large displacements
- Near topology changes

Mixed Interface-Tracking/Interface-Capturing Technique (MITICT)

T. Tezduyar, "Finite element methods for flow problems with moving boundaries and interfaces", *Archives of Computational Methods in Engineering*, **8** (2001) 83–130.

- Track the fluid–solid interfaces with a moving mesh.
- Capture over that moving mesh the fluid–fluid interfaces you cannot track.

J.E. Akin, T. Tezduyar and M. Ungor, "Computation of flow problems with the Mixed Interface-Tracking/Interface-Capturing Technique (MITICT)", *Computers & Fluids*, **36** (2007) 2–11.

Fluid–Solid Interface-Tracking/Interface-Capturing Technique (FSITICT)

T. Tezduyar, K. Takizawa, C. Moorman, S. Wright, and J. Christopher, "Space-time finite element computation of complex fluid-structure interactions", *International Journal for Numerical Methods in Fluids*, **64** (2010) 1021–1218.

- Track the interfaces you can with a moving mesh.
- Capture over that moving mesh the interfaces you cannot track.

Method Supreme

Has the...

- Accuracy of interface-tracking (moving-mesh) methods Better resolution of boundary layers
- Flexibility of being able to deal with TC in the fluid mechanics mesh Allow actual contact between moving solid surfaces
- Computational practicality of accomplishing these in 3D analysis Realistic meshes and computing times

ST Interface-Tracking with Topology Change (ST-TC) Method Supreme

Next Presentation: Kenji Takizawa

Solution of Fully-Discretized Equations

Solution of Fully-Discretized Equations Block-Iterative Coupling

$$\begin{split} \frac{\partial \mathbf{N}_1}{\partial \mathbf{d}_1} \Big|_{\left(\mathbf{d}_1^i, \ \mathbf{d}_2^i, \ \mathbf{d}_3^i\right)} \left(\Delta \mathbf{d}_1^i\right) &= \mathbf{F}_1 - \mathbf{N}_1 \left(\mathbf{d}_1^i, \ \mathbf{d}_2^i, \ \mathbf{d}_3^i\right) \\ \\ \frac{\partial \mathbf{N}_2}{\partial \mathbf{d}_2} \Big|_{\left(\mathbf{d}_1^{i+1}, \ \mathbf{d}_2^i, \ \mathbf{d}_3^i\right)} \left(\Delta \mathbf{d}_2^i\right) &= \mathbf{F}_2 - \mathbf{N}_2 \left(\mathbf{d}_1^{i+1}, \ \mathbf{d}_2^i, \ \mathbf{d}_3^i\right) \end{split}$$

$$\left. \frac{\partial \mathbf{N}_3}{\partial \mathbf{d}_3} \right|_{\left(\mathbf{d}_1^{i+1}, \ \mathbf{d}_2^{i+1}, \ \mathbf{d}_3^i\right)} \left(\Delta \mathbf{d}_3^i
ight) \ = \ \mathbf{F}_3 - \mathbf{N}_3 \left(\mathbf{d}_1^{i+1}, \ \mathbf{d}_2^{i+1}, \ \mathbf{d}_3^i
ight)$$

Flow-Induced Vibrations of a Cantilevered Pipe

S. Mittal and T.E. Tezduyar, "Parallel finite element simulation of 3D incompressible flows – fluid-structure interactions", *International Journal for Numerical Methods in Fluids*, 21 (1995) 933-953.

FSI Modeling of a Parachute PMA Retraction

Before Retraction

After Retraction

T.E. Tezduyar, S. Sathe, R. Keedy and K. Stein, "Space-time finite element techniques for computation of fluid-structure Interactions", *Computer Methods in Applied Mechanics and Engineering*, 195 (2006) 2002-2027.

Solution of Fully-Discretized Equations Quasi-Direct Coupling

$$\frac{\partial \mathbf{N}_1}{\partial \mathbf{d}_1}\Big|_{\left(\mathbf{d}_1^i, \ \mathbf{d}_2^i, \ \mathbf{d}_3^i\right)}\left(\Delta \mathbf{d}_1^i\right) + \frac{\partial \mathbf{N}_1}{\partial \mathbf{d}_2}\Big|_{\left(\mathbf{d}_1^i, \ \mathbf{d}_2^i, \ \mathbf{d}_3^i\right)}\left(\Delta \mathbf{d}_2^i\right) = \mathbf{F}_1 - \mathbf{N}_1\left(\mathbf{d}_1^i, \ \mathbf{d}_2^i, \ \mathbf{d}_3^i\right)$$

$$\left. \frac{\partial \mathbf{N}_2}{\partial \mathbf{d}_1} \right|_{\left(\mathbf{d}_1^i, \ \mathbf{d}_2^i, \ \mathbf{d}_3^i\right)} \left(\Delta \mathbf{d}_1^i \right) + \left. \frac{\partial \mathbf{N}_2}{\partial \mathbf{d}_2} \right|_{\left(\mathbf{d}_1^i, \ \mathbf{d}_2^i, \ \mathbf{d}_3^i\right)} \left(\Delta \mathbf{d}_2^i \right) = \mathbf{F}_2 - \mathbf{N}_2 \left(\mathbf{d}_1^i, \ \mathbf{d}_2^i, \ \mathbf{d}_3^i \right)$$

$$\left.\frac{\partial \mathbf{N}_3}{\partial \mathbf{d}_3}\right|_{\left(\mathbf{d}_1^{i+1}, \ \mathbf{d}_2^{i+1}, \ \mathbf{d}_3^i\right)}\left(\Delta \mathbf{d}_3^i\right) = \mathbf{F}_3 - \mathbf{N}_3\left(\mathbf{d}_1^{i+1}, \ \mathbf{d}_2^{i+1}, \ \mathbf{d}_3^i\right)$$

SELECTIVE SCALING ON 1+2 BLOCK

Ringsail Parachute

Homogenized Modeling of Geometric Porosity (HMGP-FG)

Dynamic Area Changes in FSI

A₁ : Fluid Surface Area

 A_F : Fabric Area A_G : Gap Area

$$u_n = -(k_F)_J \frac{A_F}{A_1} \Delta p - (k_G)_J \frac{A_G}{A_1} sgn(\Delta p) \sqrt{\frac{|\Delta p|}{\rho}}$$

HMGP-FG

n-Gore Fluid Mechanics Computation

HMGP-FG

Shape Dependency in a Breathing Cycle

Shape varies with breathing:

Slit Geometries

Shapes determined by structure-only computation using symmetrized pressure coming from a coarse-mesh FSI.

FSI Modeling of Spacecraft Parachutes Opening ("Disreefing") From Stage 2 to Stage 3

Aerodynamics of Flapping Wings Smooth-Surface and Motion Representations

K. Takizawa, B. Henicke, A. Puntel, T. Spielman and T.E. Tezduyar, "Space-time computational techniques for the aerodynamics of flapping wings", *Journal of Applied Mechanics*, **79**, 010903 (2012).

Solution to Experiment Limitations

- Video-capturing limitations
 - Not enough tracking points
 - Error and uncertainty

Tracking Points

Dr. Fabrizio Gabbiani and Dr. Raymond Chan (BCM, Houston)

Aerodynamics of Flapping Wings Actual Locust and Computer Model

Mesh Moving and Remeshing With NURBS Representation in Time

Mesh Motion

WILEY SERIES IN COMPUTATIONAL MECHANICS

Computational Fluid-Structure Interaction

Methods and Applications

Yuri Bazilevs, Kenji Takizawa and Tayfun E. Tezduyar

Computational Fluid–Structure Interaction

A Short Course in Taipei

enue

Howard International House, Taipei, Taiwan (in connection with FEF 2015)

Short-Course Instructors Yuri Bazilevs (University of California, San Diego)

Kenji Takizawa (Waseda University, Tokyo) Tayfun Tezduyar (Rice University, Houston)

Information http://www.tafsm.org/TaipeiFSI2015/